Genomes and AI: From Packing to Regulation

Title: Genomes and AI: From Packing to Regulation

Speaker: Dr. Caroline Uhler, Massachusetts Institute of Technology, USA

Date: Friday, 19th July 2019
Time: 11:30 am
Venue: Haapus (LH1), ELC, NCBS Bangalore


Although the genetic information in each cell within an organism is almost identical, gene expression varies widely between different cell types. Recent evidence suggests that the spatial organization of the genome represents an important epigenetic regulator of expression and alterations thereof are associated with various diseases. In this talk, I will analyze the link between the 3D genome organization and gene regulation at the single-cell level by combining sequencing data (drop-seq, perturb-seq, Hi-C) with imaging data (3d FISH) and modeling (causal inference, geometric packing models, and autoencoders/deep learning). In particular, I will propose a new chromosome packing model that links the mechanical state of a cell with gene expression via functional gene clusters in the chromosome intermingling regions. In addition, I will discuss causal inference algorithms for learning gene regulatory networks by taking advantage of the high-throughput interventional single-ce ll RNA-seq data that is currently being produced. Furthermore, I will discuss approaches for integrating different data modalities such as sequencing or imaging via autoencoders. Finally, I will present a machine learning pipeline for detecting changes in genome packing at the single-cell level as a biomarker for early cancer diagnostics. Collectively, our studies provide important insights into the spatial control of genetic information in health and disease.

All are welcome!
© Copyright 2016 - 2018 National Centre for Biological Sciences