Title | Extreme active matter at high densities |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | Mandal R, Bhuyan PJyoti, Chaudhuri P, Dasgupta C, Rao M |
Volume | 11 |
Issue | 1 |
Pagination | 2581 |
Date Published | 2020/05/22 |
ISBN Number | 2041-1723 |
Keywords | dense active matter, dense extreme active matter, glass transition, jamming, plasticity, turbulence |
Abstract | We study the remarkable behaviour of dense active matter comprising self-propelled particles at large Péclet numbers, over a range of persistence times, from τp → 0, when the active fluid undergoes a slowing down of density relaxations leading to a glass transition as the active propulsion force f reduces, to τp → ∞, when as f reduces, the fluid jams at a critical point, with stresses along force-chains. For intermediate τp, a decrease in f drives the fluid through an intermittent phase before dynamical arrest at low f. This intermittency is a consequence of periods of jamming followed by bursts of plastic yielding associated with Eshelby deformations. On the other hand, an increase in f leads to an increase in the burst frequency; the correlated plastic events result in large scale vorticity and turbulence. Dense extreme active matter brings together the physics of glass, jamming, plasticity and turbulence, in a new state of driven classical matter. |
URL | https://doi.org/10.1038/s41467-020-16130-x |
Short Title | Nature Communications |